-Histórico
Vol 19 [2012]
Vol 18 [2011]
Vol 17 [2010]
Vol 16 [2009]
Vol 15 [2008]
Vol 14 [2007]
Vol 13 [2006]
Vol 12 [2005]
Vol 11 [2004]
Vol 9 [2002]
Vol 8 [2001]
-- Num 8 [Dic]
-- Num 7 [Nov]
-- Num 6 [Ago]
-- > Num 5 [Jun]
-- Num 4 [May]
-- Num 3 [Abr]
-- Num 2 [Mar]
-- Num 1 [Ene]
Vol 7 [2000]
Vol 6 [1999]
Vol 5 [1998]
-- Directorio de Autores
 
Portada > Vol 8 > Num 5 > Articulo 240    
     
Revisión  

 

Biología molecular del dolor: ¿tiene algún interés clínico?.

Autores: Noguchi , K ; Tohyama , M ;

Codigo de referencia de este contenido:
Tohyama , M ; Noguchi , K ; :Biología molecular del dolor: ¿tiene algún interés clínico?. Rev Soc Esp Dolor 8 (2001);5 :332 - 336
 

 

_Servicios

 

Los recientes avances en nuestra comprensión de los mecanismos del dolor pueden atribuirse a la aplicación de las técnicas de biología molecular a la investigación del dolor. Dichas técnicas han permitido ya la clonación y caracterización de nuevas proteínas en los canales iónicos implicadas en la generación, modulación y propagación de potenciales de acción a lo largo de los axones de los nociceptores. Dichas técnicas siguen revelando mecanismos nociceptivos que afectan a moléculas, receptores y redes neurales y sugieren una reorganización neural (plasticidad) en la médula espinal y el tallo cerebral cuando se produce alguna lesión periférica en tejidos o nervios.

En su intervención presidencial durante el último Congreso Mundial de la IASP, el Profesor Besson expresó su preocupación por la aparente divergencia de la investigación clínica y básica, pese a que los nuevos conocimientos sobre los mecanismos fundamentales de la nocicepción prometen grandes avances terapéuticos. Es normal que transcurra un tiempo considerable entre la obtención de nueva información procedente de la investigación básica y su aplicación clínica (l,2). Hoy en día, en los albores de la participación de la biología molecular en la investigación y el tratamiento clínico del dolor, es fundamental que la IASP fomente el intercambio de información entre los profesionales de la práctica clínica y la investigación básica. De lo contrario, esa laguna podría aumentar bajo la presión de una acumulación cada vez más rápida de información cada vez más especializada (3). En este número de Pain: Clinical U p d a t e s se describe la contribución de la biología molecular al conocimiento de las adaptaciones a la nocicepción en varios modelos de dolor, incluida la identificación de nuevas moléculas que participan en dicho proceso. También describimos los posibles objetivos de la investigación molecular del dolor, como la “investigación translacional” que incorpora las observaciones preclínicas a las investigaciones clínicas. La investigación clínica y básica parecen haber tomado caminos divergentes pese a que los nuevos conocimientos sobre los mecanismos fundamentales de la nocicepción prometen importantes avances te -r a p é u t i c o s .

N U E VAS MOLÉCULAS RELACIONADAS CON LA N O C I C E P C I Ó N

La plasticidad neuronal, una característica esencial del sistema nervioso, es una “palabra murmurada” en la actual investigación del dolor. Las fluctuaciones en la expresión de los genes que reflejan cambios en las demandas funcionales sobre las neuronas individuales son un hecho cotidiano. En presencia de una inflamación periférica permanente, por ejemplo, la activación prolongada de las fibras C altera la pauta de transcripción génica en las células del ganglio de la raíz dorsal (GRD) y las neuronas del asta dorsal. Cuando se produce una lesión de los nervios periféricos, los cambios en la excitabilidad de las neuronas y los niveles de mRNA en las neuronas sensoriales crean las condiciones idóneas para que aparezca dolor crónico. Recientemente se han descubierto algunos mecanismos que contribuyen al aumento de la excitabilidad en el GRD.

Un ejemplo sorprendente es el de la capsaicina o receptor 1 vanilloide (VR1) que ha sido clonado y caracterizado (4). Curiosamente, los protones, cuya concentración aumenta en un entorno ácido (lo que ya se sabía que aumenta el efecto nocivo de la cap-saicina), parecen ser ligandos endógenos de VR1 (5). Las marcadas similitudes funcionales entre la activación de VRl inducida por capsaicina y la inducida por calor indican que VR1 es el transductor fisiológico de los estímulos dolorosos producidos por el calor.

Las marcadas similitudes funcionales entre la acti -vación de VR1 inducida por capsaicina y la inducida por calor indican que VR1 es el transductor fisiológi -co de los estímulos dolorosos producidos por el calor.

Recientemente se han descubierto unos canales sensibles a los protones, una familia de canales iónicos que se activan al aumentar la acidez del entorno (disminución del pH) (6,7). Estas proteínas, llamadas canales iónicos sensibles al ácido o ASICs, pueden dividirse en cinco subtipos, cada uno de ellos con unas características diferentes en términos de cinética de activación, dependencia del pH y especificidad tisular. Cuatro de esos subtipos se expresan en neuronas sensoriales de pequeño diámetro, convirtiéndoles en candidatos mediadores de la hiperalgesia en los tejidos inflamados y mal regados que se vuelven acidóticos.

Entre otras proteínas de los canales iónicos que se han clonado recientemente, el canal de sodio (Na+) resistente a tetrodotoxina (TTX) ha atraído la mayor atención por su localización en el sistema nervioso y su expresión únicamente después de alguna lesión neurológica (8,9). Este tipo de canal se encuentra principalmente en neuronas aferentes primarias des-mielinizadas de pequeño diámetro. Los experimentos electrofisiológicos e inmunohistoquímicos realizados en ratones “bloqueados” (10) han sugerido que un canal Na+ resistente a TTX (llamado PN3 o específico de neuronas sensoriales, SNS), podría desempeñar un papel fundamental en los estados de dolor persistente, como dolor neuropático y dolor inflamatorio crónico.

Otra proteína de los canales iónicos que está implicada en la nocicepción es el receptor de la adeno-sina trifosfato (ATP). Se sabe que el AT P d e s p o l a r i z a las neuronas sensoriales, y la liberación de AT P p o r parte del tejido dañado puede aumentar la activación de los nociceptores (11). Entre los diferentes miembros que componen la subfamilia de receptores del AT P llamada P2X se ha clonado y caracterizado el receptor P2X3 y se ha demostrado mediante hibridación in situ que se localiza en neuronas nociceptivas de pequeño tamaño. Considerando la localización anatómica de este canal y el efecto algésico del AT P, se ha sugerido que el canal P2X3 podría mediar la activación provocada por el AT P de pequeñas neuronas nociceptivas (l2).

M É TODOS GENÉTICOS EN FA R M A C O L O G Í A

Las herramientas moleculares utilizadas para la investigación farmacológica consisten en manipulaciones genéticas, especialmente mutaciones nulas o “bloqueos” que eliminan ligandos específicos o sus receptores. Los ratones con bloqueos génicos son útiles para estudiar la contribución de determinadas moléculas a la nocicepción. Estudios de ratones con deleciones de los genes de los receptores opiáceos han arrojado nueva luz no sólo sobre el funcionamiento de los opiáceos, sino también sobre la heterogeneidad de los receptores opiáceos y sus interacciones, así como sobre la participación de los distintos componentes del sistema opiáceo (l3,l4). La deleción de los genes de los receptores nicotínicos ha sugerido la posibilidad de que esos receptores intervengan en el procesamiento nociceptivo (l5). Estudios de ratones con deleciones de genes que codifican diferentes neurotrofinas y sus receptores, han facilitado información crítica sobre la aparición del fenotipo nociceptor y la plasticidad neuronal después de una lesión (l6-l8). Los ratones con una deleción del gen correspondiente a la molécula del segundo mensajero, la proteína quinasa C (PKC) gamma, exhiben unas respuestas intactas al dolor agudo, pero menor alodinia térmica y mecánica después de sufrir daños neurológicos. La alodinia anormal de estos ratones con bloqueo génico sugiere por primera vez que la PKC gamma presente en la sustancia gelatinosa que existe entre las neuronas es fundamental para el proceso de sensibilización central después de una lesión nerviosa (l9). Estos resultados ilustran la capacidad de la manipulación genética para identificar o confirmar el papel que desempeñan determinadas moléculas o sus receptores en la nocicepción.

Por el contrario, observaciones recientes en ratones con bloqueo génico que carecían de la sustancia P (SP) o su receptor (NKl) han dado resultados inesperados (20-22). Curiosamente, algunos ratones con supresión de SP o NK1 mostraban una hipersensibilidad mecánica intacta con inflamación. Otras contradicciones observadas entre los ratones con mutaciones nulas para SP y NK1 fueron las diferencias en placas calentadas, fijación con ácido acético y prueba de la formalina. El método del bloqueo génico es susceptible a una serie de factores de confusión como el enmascaramiento del fenotipo por mecanismos compensatorios que aparecen ya en el útero y durante el inicio de la vida postnatal. Las técnicas de bloqueo específicas de un tejido que manipulan la expresión de los genes en neuronas sensibles, pero no en otras células, o los bloqueos inducibles que ejercen sus efectos una vez completado el desarrollo, son mejoras técnicas introducidas para reducir al mínimo esos factores de confusión.

Los ratones transgénicos que carecen de sustancia P o su receptor han dado resultados sorpr e n d e n t e s .

UN CONOCIMIENTO MÁS PROFUNDO DE LOS MECANISMOS DEL D O L O R

El conocimiento de los mecanismos del dolor mejora con independencia del nivel de análisis, no sólo gracias a la identificación de nuevas moléculas utilizando las técnicas que se describían antes, sino también por los nuevos conocimientos adquiridos sobre la función de moléculas cuya presencia ya se conocía después de producirse inflamación de los tejidos o lesiones neurológicas (23).

1.  F a c t o res de transcripción y moléculas de se -gundo mensajero.

El factor de transcripción que más se ha investigado en las neuronas del asta dorsal es el gen c - f o s. Desde el descubrimiento de Hunt (24) de que los estímulos dolorosos inducen la expresión de c - f o s e n las neuronas del asta dorsal, muchos estudios han utilizado la expresión de FOS (el producto proteico de dicho gen) como marcador molecular de la actividad neuronal. Además, en las neuronas del asta dorsal se ha observado la fosforilación de la proteína que se une al elemento sensible al A M P c í c l i c o (CREB) (25), así como proteínas quinasas reguladas por señales extracelulares (ERK) (26) unos minutos después de aplicar el estímulo periférico doloroso.

2. F a c t o res neurotróficos (neuro t ro f i n a s ).

Numerosos estudios han proporcionado claras evidencias de que las neurotrofinas pueden desempeñar funciones críticas para el desarrollo de los sistemas sensoriales y la plasticidad neuronal. Hace poco se ha descubierto que los nociceptores pueden dividirse en dos grandes clases (27). Una clase de neuronas nociceptoras, que contienen receptores trkA, sustancia P y péptido relacionado con el gen de la calcito-nina (CGRP), está regulada por el factor de crecimiento de los nervios (NGF). Una segunda clase de neuronas nociceptoras contiene receptores c - re t, tiene capacidad de unión a IB4 y está regulada por el factor neurotrófico derivado de las células gliales (GDNF). La función de los nociceptores regulados por GDNF como objetivos potenciales de los nuevos analgésicos en pacientes con dolor agudo y crónico está siendo actualmente objeto de estudio.

Un hallazgo sorprendente es que un tipo de neuro-trofina, el factor neurotrófico derivado del cerebro (BDNF), es un neuromodulador en las neuronas noci-ceptivas de pequeño diámetro (28). Se ha observado que el BDNF se produce en las neuronas del GRD, se libera en las terminales centrales de las neuronas aferentes primarias, y modula la excitabilidad post-si-náptica. El BDNF puede ser modulado por NGF en nociceptores que expresan trkA y sustancia P.

3. Citocinas y dolor inflamatorio.

Las citocinas proinflamatorias, entre ellas los factores de necrosis tumoral y las interleucinas (TNF-a, I L - l -b, IL-6, IL-8, etc.), aumentan la actividad en las rutas nociceptivas (29). Estas sustancias pueden causar indirectamente sensibilización al activar la liberación de otras citocinas y mediadores clásicos de la hiperalgesia, como prostanoides, aminas simpatomi-méticas, endotelina o glutamato. La sensibilización neuronal de las citocinas ocurre centralmente y también en la periferia. Las citocinas antiinflamatorias IL-4, IL-10, IL-3, etc.) liberadas por diferentes tipos de células durante la inflamación pueden inhibir la liberación de citocinas proinflamatorias y reducir la expresión de ciclooxigenasa (COX)-2.

4. Aspectos moleculares del sistema opiáceo. Los métodos de biología molecular han aportado conceptos nuevos e importantes sobre las acciones de los opiáceos mu y delta. Recientes investigaciones han identificado nueve exones que ocupan más de 200 kilobases en el gen del receptor de opiáceos mu ( M O R )-1 (30). Los receptores delta parecen estar implicados en la aparición de tolerancia a la morfina (31). La farmacología de la orfanina FQ (OFQ)/noci-ceptina, el ligando endógeno de la sustancia ORL1 similar al receptor de opiáceos, es compleja, tanto potenciando como inhibiendo la señal nociceptiva (32). Los péptidos activos identificados recientemente a partir del precursor OFQ/nociceptina, OFQ/2 y nocis-tatina, son también interesantes porque la nocistatina contrarresta la acción de la nociceptina (33).

5.  Mecanismos preclínicos del dolor neur o p á t i c o . Los mecanismos del dolor neuropático que entran en juego después de una lesión neurológica periférica han sido ampliamente estudiados (34). Algunos modelos de dolor neuropático utilizan una lesión neuro-lógica parcial, después de la cual las neuronas aferentes intactas trasmiten señales sensoriales a la médula espinal y las neuronas aferentes divididas generan actividad aferente ectópica. Después de una lesión neurológica clínica, las fibras A -b que son activadas normalmente por contacto con la luz pueden transmitir información nociceptiva. En estudios animales (35,36), algunas neuronas del GRD con fibras A -b comienzan a expresar SP/CGRP después de una lesión. Las neuronas divididas del GRD muestran también una mayor expresión de SP/CGRP (37) que puede estar regulada por el NGF. Estas respuestas compensatorias en el dolor neuropático se han relacionado con “mecanismos de seguridad contra fallos” (38).

6.  R e o rganización estructural en el dolor neuro -p á t i c o.

A principios de los años noventa, dos importantes trabajos demostraron el rápido crecimiento de los nervios centrales después de sufrir una lesión neuro-lógica periférica. En un artículo se decía que las fibras A -b se extienden de la lámina III a la lámina II, una zona normalmente ocupada sólo por la fibras C nociceptivas, y luego establecen contacto sináptico con las neuronas de esa región (39). Esta reor g a n i z ación podría explicar la alodinia producida por la estimulación A -b normalmente inocua después de una lesión neurológica (40). Un segundo artículo describía la división simpática alrededor de las grandes neuronas en el GRD después de una lesión neuroló-gica periférica (40). Este hallazgo confirma que las neuronas eferentes y sensoriales del sistema simpático pueden acoplarse funcionalmente después de una lesión neurológica.

7. Nuevas rutas de transmisión del dolor.

Hace poco se demostró que las neuronas postsi-nápticas de la columna dorsal y las rutas del lemnisco medio trasmiten sensaciones de dolor visceral (4l,42). El estímulo doloroso procedente de las vís-ceras provoca la hiperexcitabilidad de las neuronas de la columna dorsal que, a su vez, desencadenan la actividad de las neuronas ventroposterolaterales (VPL) en el tálamo. Los estudios correlativos de conducta en animales con lesiones en la columna dorsal respaldan el concepto de la columna dorsal como ruta del dolor visceral.

La activación de la columna dorsal después de una lesión se ha descrito también en los modelos de dolor neuropático. Los núcleos de las neuronas de la columna dorsal son hiperexcitables y exhiben unas propiedades electrofisiológicas muy alteradas en animales con patología neuropática comparado con los animales intactos (43). El análisis de la actividad V P L sugiere que las señales nociceptivas de la periferia pueden transferir su ruta aferente del tracto espinota-lámico (TET) a la columna dorsal (44).

O B J E T I VOS DE LOS ESTUDIOS DE BIOLOGÍA M O L E C U L A R

R e s u m e n

1. G e n e s. La biología molecular ofrece un potente medio de averiguar cómo la expresión alterada de los genes controla las adaptaciones neuronales a la inflamación y a los daños en tejidos o nervios. La demostración de la importancia de los nuevos genes identificados depende de que se conozca su función. Al aproximarse el final del proyecto del genoma humano, es posible que se descubran “nuevos” genes implicados en dolencias específicas o enfermedades asociadas a dolor crónico. Los recientes descubrimientos sobre los determinantes genéticos de las diferencias individuales en el dolor y la analgesia tienen un gran interés (45). Otra posible aplicación de la biología molecular es el control del dolor por medio de la transferencia génica. La terapia génica puede corregir defectos genéticos mediante la reposición o sustitución del gen defectuoso por una copia funcional nueva. Los estudios que exploran la terapia génica para el control del dolor no han hecho más que empezar (46). En un futuro próximo es posible que la terapia génica basada en secuencias de sentido opuesto o la inserción de material genético en las neuronas de la médula espinal por medio de vectores víricos, empiecen a tener una aplicación clínica.

2. P roductos génicos. Muchas de las moléculas y mecanismos del dolor que se describen en este artículo podrían llegar a cambiar la terapia clínica. El reciente avance de la investigación básica de los canales iónicos en los no-ciceptores de las neuronas sensoriales podría llevar al desarrollo de nuevos analgésicos (38). Receptores de aminoácidos, neuropéptidos, factores de crecimiento, catecolaminas, citocinas, etc., serán también objetivos de los nuevos agentes terapéuticos. En el último seminario del Congreso Mundial sobre el Dolor de la IASP, se propuso una clasificación del dolor persistente basada en el tipo de mecanismo. Una clasificación así podría ayudar a generar y probar hipótesis para la selección de tratamientos específicos del d o l o r, incluido el diseño y el desarrollo de fármacos.

Como resultado, los clínicos podrían contar con herramientas más fiables y apropiadas para la investigación clínica, el diagnóstico y el control del dolor.

B I B L I O G R A F Í A

1 .   Strassels SA et al. Anesth Analg 1999; 89: 1528-33.

2 .    Mosteller F. Science 1981; 211: 881-6.

3 .    Jadad AR, Cepeda MS. Pain: Clin Updates 1999; V I I ( 2 ) .

4 .   Caterina MJ et al. Nature 1997; 389: 816-24.

5 .   Tominaga M et al. Neuron 1998; 21: 1-20.

6 .    Waldmann R et al. Nature 1997; 386: 173-7.

7 .    Waldmann R et al. J Biol Chem 1997; 272: 20975-8.

8 .    Akopian AN et al. Nature 1996; 379: 257-62.

9 .    Sangameswaran L et al. J iol Chem 1996; 271: 5953-6.

I 0 .   Akopian AN et al. Nat Neurosci l999; 2: 541-8.

II .   Jahr CE, Jessell TM. Nature 1983; 304: 730-3.

1 2 .    Vulchanova L et al. Eur J Neurosci 1998; 10: 3470-8.

1 3 .    K i e ffer SL. Trends Pharmacol Sci l999; 20: 19-26.

1 4 .    Matthes HW et al. Nature 1996; 383: 819-23.

1 5 .    Marubio LM et al. Nature l999; 398: 805-10.

1 6 .    Silos-Santiago Let al. Eur J Neurosci 1997; 9: 2045-56.

1 7 .    Liebl DJ et al. J Neurosci 1997; 17: 911 3 - 2 1 .

1 8 .    Airaksinen MS et al. Neuron 1996; 16: 287-95.

1 9 .   M a l m b e rg AB et al. Science 1997; 278: 279-83.

2 0 .   Cao Ya et al. Nature 1998; 392: 390-4.

2 1 .    Zimmer A et al. Proc Natl Acad Sci USA 1 998; 95:2 6 3 0 - 5 .

2 2 .    De Felipe C et al. Nature 1998; 392: 394-7.

2 3 .    Song SO, Carr DC. Pain: Clin Updates l999; VII (l).

2 4 .    Hunt SP et al. Natue 1987; 328: 632-4.

2 5 .    Ji RR, Rupp F. J Neurosci 1997; 1776-85.

2 6 .    Ji RR et al. Nat Neurosci l999; 2: 111 4 - 9 .

2 7 .    Snider WD, McMahon SB. Neuron 1998; 20: 629-32.

2 8 .    Michael GJ et al. J Neurosci 1997; 17: 8476-90.

2 9 .    Hori T et al. Ann N YAcad Sci 1 998; 840: 269-81.

3 0 .   Pan YX et al. Mol Pharmacol l999; 56: 396-403.

3 1 .    Zhy Y et al. Neuron l999; 24: 243-52.

3 2 .    Meunier JC et al. Nature 1995; 377: 532-5.

3 3 .    Okuda-Ashitaka E et al. Nature 1998; 392: 286-9.

3 4 .    WooU CJ, Manion RJ. Lancet 1999; 1959-64.

3 5 .    Noguchi K et al. J Neurosci 1995; 15: 7633-43.

3 6 .    Miki K et al. Neuroscience 1998; 82: 1243-52.

3 7 .    Fukuoka T et al. Pain 1998; 78: 13-26.

3 8 .    McCormack K. Pain Clin Updates 1999; VI (3).

3 9 .    Woolf CJ et al. Nature 1992; 355: 75-8.

4 0 .   McLachlan EM et al. Nature 1993; 363: 543-6. 4 1 .    AI-Chaer ED et al. J Neurophysiol 1996; 76: 2675-9 0 .

4 2 .    H i r s h b e rg RM et al. Pain 1996; 67: 291-305.

4 3 .    Miki K et al. Pain 1998; 76: 407-15.

4 4 .    Miki K et al. Pain 2000; 85: 263-71.

4 5 .    Mogil JS. Proc Natl Acad Sci USA l999; 96: 7744-5 1 .

4 6 .    Finegold M et al. Hum Gene Ther 1999; 10: 1251-7.

 

Descargar articulo pdf

 

< Artículo anterior
Dolor de miembro fantasma

 

 
 

© 2007 Sociedad Española del Dolor (SED) – Creado por CYCVISION. Usabilidad y Rentabilidad